test command or [expr]

test command or [expr] is used to see if an expression is true, and if it is true it return zero(0), otherwise returns nonzero for false.
Syntax:
test expression OR [expression]

Example:
Following script determine whether given argument number is positive.

	$ cat > ispostive
#!/bin/sh
#
Script to see whether argument is positive
#
if test $1 -gt 0
then
echo "$1 number is positive"
fi

Run it as follows
$ chmod 755 ispostive
$ ispostive 5
5 number is positive
$ispostive -45
Nothing is printed
$ispostive
./ispostive: test: -gt: unary operator expected
Detailed explanation
The line, if test $1 -gt 0 , test to see if first command line argument($1) is greater than 0. If it is true(0) then test will return 0 and output will printed as 5 number is positive but for -45 argument there is no output because our condition is not true(0) (no -45 is not greater than 0) hence echo statement is skipped. And for last statement we have not supplied any argument hence error ./ispostive: test: -gt: unary operator expected, is generated by shell , to avoid such error we can test whether command line argument is supplied or not.

test or [expr] works with
1.Integer (Number without decimal point)
2.File types
3.Character strings

For Mathematics, use following operator in Shell Script
	Mathematical Operator in Shell Script
	Meaning
	Normal Arithmetical/ Mathematical Statements
	But in Shell

	
	
	
	For test statement with if command
	For [expr] statement with if command

	-eq
	is equal to
	5 == 6
	if test 5 -eq 6
	if [5 -eq 6]

	-ne
	is not equal to
	5 != 6
	if test 5 -ne 6
	if [5 -ne 6]

	-lt
	is less than
	5 < 6
	if test 5 -lt 6
	if [5 -lt 6]

	-le
	is less than or equal to
	5 <= 6
	if test 5 -le 6
	if [5 -le 6]

	-gt
	is greater than
	5 > 6
	if test 5 -gt 6
	if [5 -gt 6]

	-ge
	is greater than or equal to
	5 >= 6
	if test 5 -ge 6
	if [5 -ge 6]

NOTE: == is equal, != is not equal.

For string Comparisons use
	Operator
	Meaning

	string1 = string2
	string1 is equal to string2

	string1 != string2
	string1 is NOT equal to string2

	string1
	string1 is NOT NULL or not defined

	-n string1
	string1 is NOT NULL and does exist

	-z string1
	string1 is NULL and does exist

Shell also test for file and directory types
	Test
	Meaning

	-s file
	Non empty file

	-f file
	Is File exist or normal file and not a directory

	-d dir
	Is Directory exist and not a file

	-w file
	Is writeable file

	-r file
	Is read-only file

	-x file
	Is file is executable

Logical Operators
Logical operators are used to combine two or more condition at a time

	Operator
	Meaning

	! expression
	Logical NOT

	expression1 -a expression2
	Logical AND

	expression1 -o expression2
	Logical OR

if condition

if condition which is used for decision making in shell script, If given condition is true then command1 is executed.
Syntax:

if condition

then

command1 if condition is true or if exit status

of condition is 0 (zero)

...

...

fi

Condition is defined as:
"Condition is nothing but comparison between two values."

For compression you can use test or [expr] statements or even exist status can be also used.

Expreession is defined as:
"An expression is nothing but combination of values, relational operator (such as >,<, <> etc) and mathematical operators (such as +, -, / etc)."

Following are all examples of expression:
5 > 2
3 + 6
3 * 65
a < b
c > 5
c > 5 + 30 -1

Type following commands (assumes you have file called foo)
$ cat foo
$ echo $?
The cat command return zero(0) i.e. exit status, on successful, this can be used, in if condition as follows, Write shell script as

	$ cat > showfile
#!/bin/sh
#
#Script to print file
#
if cat $1
then
echo -e "\n\nFile $1, found and successfully echoed"
fi

Run above script as:
$ chmod 755 showfile
$./showfile foo
Shell script name is showfile ($0) and foo is argument (which is $1).Then shell compare it as follows:
if cat $1 which is expanded to if cat foo.

Detailed explanation
if cat command finds foo file and if its successfully shown on screen, it means our cat command is successful and its exist status is 0 (indicates success), So our if condition is also true and hence statement echo -e "\n\nFile $1, found and successfully echoed" is proceed by shell. Now if cat command is not successful then it returns non-zero value (indicates some sort of failure) and this statement echo -e "\n\nFile $1, found and successfully echoed" is skipped by our shell.

Exercise
Write shell script as follows:

	cat > trmif
#
Script to test rm command and exist status
#
if rm $1
then
echo "$1 file deleted"
fi

Press Ctrl + d to save
$ chmod 755 trmif

Answer the following question in referance to above script:
(A) foo file exists on your disk and you give command, $./trmfi foo what will be output?
(B) If bar file not present on your disk and you give command, $./trmfi bar what will be output?
(C) And if you type $./trmfi What will be output?

if...else...fi

If given condition is true then command1 is executed otherwise command2 is executed.
Syntax:
 if condition

 then

 condition is zero (true - 0)

 execute all commands up to else statement

 else

 if condition is not true then

 execute all commands up to fi

 fi

For e.g. Write Script as follows:

	$ vi isnump_n
#!/bin/sh
#
Script to see whether argument is positive or negative
#
if [$# -eq 0]
then
echo "$0 : You must give/supply one integers"
exit 1
fi
if test $1 -gt 0
then
echo "$1 number is positive"
else
echo "$1 number is negative"
fi

Try it as follows:
$ chmod 755 isnump_n

$ isnump_n 5
5 number is positive

$ isnump_n -45
-45 number is negative

$ isnump_n
./ispos_n : You must give/supply one integers

$ isnump_n 0
0 number is negative
Detailed explanation
First script checks whether command line argument is given or not, if not given then it print error message as "./ispos_n : You must give/supply one integers". if statement checks whether number of argument ($#) passed to script is not equal (-eq) to 0, if we passed any argument to script then this if statement is false and if no command line argument is given then this if statement is true. The echo command i.e.
echo "$0 : You must give/supply one integers"
 | |
 | |
 1 2
1 will print Name of script
2 will print this error message
And finally statement exit 1 causes normal program termination with exit status 1 (nonzero means script is not successfully run).

The last sample run $ isnump_n 0 , gives output as "0 number is negative", because given argument is not > 0, hence condition is false and it's taken as negative number. To avoid this replace second if statement with if test $1 -ge 0.

You can write the entire if-else construct within either the body of the if statement of the body of an else statement. This is called the nesting of ifs.

	$ vi nestedif.sh
osch=0

echo "1. Unix (Sun Os)"
echo "2. Linux (Red Hat)"
echo -n "Select your os choice [1 or 2]? "
read osch

if [$osch -eq 1] ; then

 echo "You Pick up Unix (Sun Os)"

else #### nested if i.e. if within if ######

 if [$osch -eq 2] ; then
 echo "You Pick up Linux (Red Hat)"
 else
 echo "What you don't like Unix/Linux OS."
 fi
fi

Run the above shell script as follows:
$ chmod +x nestedif.sh
$./nestedif.sh
1. Unix (Sun Os)
2. Linux (Red Hat)
Select you os choice [1 or 2]? 1
You Pick up Unix (Sun Os)
$./nestedif.sh
1. Unix (Sun Os)
2. Linux (Red Hat)
Select you os choice [1 or 2]? 2
You Pick up Linux (Red Hat)
$./nestedif.sh
1. Unix (Sun Os)
2. Linux (Red Hat)
Select you os choice [1 or 2]? 3
What you don't like Unix/Linux OS.
Note that Second if-else constuct is nested in the first else statement. If the condition in the first if statement is false the the condition in the second if statement is checked. If it is false as well the final else statement is executed.

You can use the nested ifs as follows also:
Syntax:

if condition

then

if condition

then

.....

..

do this

else

....

..

do this

fi

else

...

.....

do this

fi

Multilevel if-then-else

Syntax:
 if condition

 then

 condition is zero (true - 0)

 execute all commands up to elif statement

 elif condition1
 then

 condition1 is zero (true - 0)

 execute all commands up to elif statement

 elif condition2

 then

 condition2 is zero (true - 0)

 execute all commands up to elif statement

 else

 None of the above condtion,condtion1,condtion2 are true (i.e.

 all of the above nonzero or false)

 execute all commands up to fi

 fi

For multilevel if-then-else statement try the following script:

	$ cat > elf
#
#!/bin/sh
Script to test if..elif...else
#
if [$1 -gt 0]; then
 echo "$1 is positive"
elif [$1 -lt 0]
then
 echo "$1 is negative"
elif [$1 -eq 0]
then
 echo "$1 is zero"
else
 echo "Opps! $1 is not number, give number"
fi

Try above script as follows:
$ chmod 755 elf
$./elf 1
$./elf -2
$./elf 0
$./elf a
Here o/p for last sample run:
./elf: [: -gt: unary operator expected
./elf: [: -lt: unary operator expected
./elf: [: -eq: unary operator expected
Opps! a is not number, give number
Above program gives error for last run, here integer comparison is expected therefore error like "./elf: [: -gt: unary operator expected" occurs, but still our program notify this error to user by providing message "Opps! a is not number, give number".

for Loop

Syntax:
 for { variable name } in { list }

 do

 execute one for each item in the list until the list is

 not finished (And repeat all statement between do and done)

 done

Before try to understand above syntax try the following script:

	$ cat > testfor
for i in 1 2 3 4 5
do
echo "Welcome $i times"
done

Run it above script as follows:
$ chmod +x testfor
$./testfor
The for loop first creates i variable and assigned a number to i from the list of number from 1 to 5, The shell execute echo statement for each assignment of i. (This is usually know as iteration) This process will continue until all the items in the list were not finished, because of this it will repeat 5 echo statements. To make you idea more clear try following script:

	$ cat > mtable
#!/bin/sh
#
#Script to test for loop
#
#
if [$# -eq 0]
then
echo "Error - Number missing form command line argument"
echo "Syntax : $0 number"
echo "Use to print multiplication table for given number"
exit 1
fi
n=$1
for i in 1 2 3 4 5 6 7 8 9 10
do
echo "$n * $i = `expr $i * $n`"
done

Save above script and run it as:
$ chmod 755 mtable
$./mtable 7
$./mtable
For first run, above script print multiplication table of given number where i = 1,2 ... 10 is multiply by given n (here command line argument 7) in order to produce multiplication table as
7 * 1 = 7
7 * 2 = 14
...
..
7 * 10 = 70
And for second test run, it will print message -
Error - Number missing form command line argument
Syntax : ./mtable number
Use to print multiplication table for given number
This happened because we have not supplied given number for which we want multiplication table, Hence script is showing Error message, Syntax and usage of our script. This is good idea if our program takes some argument, let the user know what is use of the script and how to used the script.
Note that to terminate our script we used 'exit 1' command which takes 1 as argument (1 indicates error and therefore script is terminated)

Even you can use following syntax:

Syntax:
 for ((expr1; expr2; expr3))
 do

 ...

 repeat all statements between do and

 done until expr2 is TRUE

 Done

In above syntax BEFORE the first iteration, expr1 is evaluated. This is usually used to initialize variables for the loop.
All the statements between do and done is executed repeatedly UNTIL the value of expr2 is TRUE.
AFTER each iteration of the loop, expr3 is evaluated. This is usually use to increment a loop counter.

	$ cat > for2
for ((i = 0 ; i <= 5; i++))
do
 echo "Welcome $i times"
done

Run the above script as follows:
$ chmod +x for2
$./for2
Welcome 0 times
Welcome 1 times
Welcome 2 times
Welcome 3 times
Welcome 4 times
Welcome 5 times
In above example, first expression (i = 0), is used to set the value variable i to zero.
Second expression is condition i.e. all statements between do and done executed as long as expression 2 (i.e continue as long as the value of variable i is less than or equel to 5) is TRUE.
Last expression i++ increments the value of i by 1 i.e. it's equivalent to i = i + 1 statement.

[image: image1.png]

Nesting of for Loop

As you see the if statement can nested, similarly loop statement can be nested. You can nest the for loop. To understand the nesting of for loop see the following shell script.

	$ vi nestedfor.sh
for ((i = 1; i <= 5; i++)) ### Outer for loop ###
do

 for ((j = 1 ; j <= 5; j++)) ### Inner for loop ###
 do
 echo -n "$i "
 done

 echo "" #### print the new line ###

done

Run the above script as follows:
$ chmod +x nestedfor.sh
$./nestefor.sh
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5
Here, for each value of i the inner loop is cycled through 5 times, with the varible j taking values from 1 to 5. The inner for loop terminates when the value of j exceeds 5, and the outer loop terminets when the value of i exceeds 5.

Following script is quite intresting, it prints the chess board on screen.

	$ vi chessboard
for ((i = 1; i <= 9; i++)) ### Outer for loop ###
do
 for ((j = 1 ; j <= 9; j++)) ### Inner for loop ###
 do
 tot=`expr $i + $j`
 tmp=`expr $tot % 2`
 if [$tmp -eq 0]; then
 echo -e -n "\033[47m "
 else
 echo -e -n "\033[40m "
 fi
 done
 echo -e -n "\033[40m" #### set back background colour to black
 echo "" #### print the new line ###
done

[image: image2.jpg][rootals newl# ./chessboard

[rootlls newl#

Run the above script as follows:
$ chmod +x chessboard
$./chessboard
On my terminal above script produec the output as follows:

Above shell script cab be explained as follows:

	Command(s)/Statements
	Explanation

	for ((i = 1; i <= 9; i++))
do
	Begin the outer loop which runs 9 times., and the outer loop terminets when the value of i exceeds 9

	for ((j = 1 ; j <= 9; j++))
do
	Begins the inner loop, for each value of i the inner loop is cycled through 9 times, with the varible j taking values from 1 to 9. The inner for loop terminates when the value of j exceeds 9.

	tot=`expr $i + $j`
tmp=`expr $tot % 2`
	See for even and odd number positions using these statements.

	if [$tmp -eq 0]; then
 echo -e -n "\033[47m "
else
 echo -e -n "\033[40m "
fi
	If even number posiotion print the white colour block (using echo -e -n "\033[47m " statement); otherwise for odd postion print the black colour box (using echo -e -n "\033[40m " statement). This statements are responsible to print entier chess board on screen with alternet colours.

	done
	End of inner loop

	echo -e -n "\033[40m"
	Make sure its black background as we always have on our terminals.

	echo ""
	Print the blank line

	done
	End of outer loop and shell scripts get terminted by printing the chess board.

EXAMPLES:

1)

echo "Can you see the following:"

[image: image3.jpg]

for ((i=1; i<=5; i++))

do

 for ((j=1; j<=i; j++))

 do

 echo -n "$i"

 done

 echo ""

done

2)
MAX_NO=0

echo -n "Enter Number between (5 to 9) : "

read MAX_NO

if ! [$MAX_NO -ge 5 -a $MAX_NO -le 9] ; then

 echo "I ask to enter number between 5 and 9, Okay"

 exit 1

fi

clear[image: image4.jpg]2
22
2
4aa
5656056

95050800
et el

for ((i=1; i<=MAX_NO; i++))

do

 for ((s=MAX_NO; s>=i; s--))

 do

 echo -n " "

 done

 for ((j=1; j<=i; j++))

 do

 echo -n " $i"

 done

 echo ""

done

for ((i=1; i<=MAX_NO; i++))

do

 for ((s=MAX_NO; s>=i; s--))

 do

 echo -n " "

 done

 for ((j=1; j<=i; j++))

 do

 echo -n " ."

 done

 echo ""

done

echo -e "\n\n\t\t\tI hope you like it my stupidity (?)"

3)
[image: image5.png]ILinux_.
ILinux 1L inux
ILinuxILinux|Linux_.
ILinuxILinux|Linux_.
ILinux I Linux™~™
ILinux™™~~"

5> Powerd Server.

clear

for ((i=1; i<=3; i++))

do

 for ((j=1; j<=i; j++))

 do

 echo -n "|Linux"

 done

 echo "______"

done

for ((i=3; i>=1; i--))

do

 for ((j=1; j<=i; j++))

 do

 echo -n "|Linux"

 done

 if [$i -eq 3]; then

 echo -n "______"

 echo -n -e ">> Powerd Server.\n"

 else

 echo "~~~~~"

 fi

done
while loop

Syntax:
 while [condition]

 do

 command1

 command2

 done

Loop is executed as long as given condition is true. For e.g.. Above for loop program (shown in last section of for loop) can be written using while loop as:

	$cat > nt1
#!/bin/sh
#
#Script to test while statement
#
#
if [$# -eq 0]
then
 echo "Error - Number missing form command line argument"
 echo "Syntax : $0 number"
 echo " Use to print multiplication table for given number"
exit 1
fi
n=$1
i=1
while [$i -le 10]
do
 echo "$n * $i = `expr $i * $n`"
 i=`expr $i + 1`
done

Save it and try as
$ chmod 755 nt1
$./nt1 7
Above loop can be explained as follows:

	 n=$1
	Set the value of command line argument to variable n. (Here it's set to 7)

	i=1
	Set variable i to 1

	while [$i -le 10]
	This is our loop condition, here if value of i is less than 10 then, shell execute all statements between do and done

	do
	Start loop

	echo "$n * $i = `expr $i * $n`"
	Print multiplication table as
7 * 1 = 7
7 * 2 = 14
.... 7 * 10 = 70, Here each time value of variable n is multiply be i.

	i=`expr $i + 1`
	Increment i by 1 and store result to i. (i.e. i=i+1)
Caution: If you ignore (remove) this statement than our loop become infinite loop because value of variable i always remain less than 10 and program will only output
7 * 1 = 7
...
E (infinite times)

	done
	Loop stops here if i is not less than 10 i.e. condition of loop is not true. Hence
loop is terminated.

Functions

Humans are intelligent animals. They work together to perform all of life's task, in fact most of us depend upon each other. For e.g. you rely on milkman to supply milk, or teacher to learn new technology (if computer teacher). What all this mean is you can't perform all of life's task alone. You need somebody to help you to solve specific task/problem.

The above logic also applies to computer program (shell script). When program gets complex we need to use divide and conquer technique. It means whenever programs gets complicated, we divide it into small chunks/entities which is know as function.

Function is series of instruction/commands. Function performs particular activity in shell i.e. it had specific work to do or simply say task. To define function use following syntax:
Syntax:
 function-name ()

 {

 command1

 command2

 ...

 commandN

 return

 }

Where function-name is name of you function, that executes series of commands. A return statement will terminate the function. Example:
Type SayHello() at $ prompt as follows
$ SayHello()
{
 echo "Hello $LOGNAME, Have nice computing"
 return
}
To execute this SayHello() function just type it name as follows:
$ SayHello
Hello vivek, Have nice computing.

This way you can call function. Note that after restarting your computer you will loss this SayHello() function, since its created for current session only. To overcome this problem and to add you own function to automat some of the day today life task, add your function to /etc/bashrc file. To add function to this file you must logon as root. Following is the sample /etc/bashrc file with today() function , which is used to print formatted date. First logon as root or if you already logon with your name (your login is not root), and want to move to root account, then you can type following command , when asked for password type root (administrators) password
$ su -l
password:
Open file /etc/bashrc using vi and goto the end of file (by pressing shift+G) and type the today() function:

	# vi /etc/bashrc
At the end of file add following in /etc/bashrc file
#
today() to print formatted date
#
To run this function type today at the $ prompt
Added by Vivek to show function in Linux
#
today()
{
echo This is a `date +"%A %d in %B of %Y (%r)"`
return
}

Save the file and exit it, after all this modification your file may look like as follows (type command cat /etc/bashrc)

	# cat /etc/bashrc
/etc/bashrc

System wide functions and aliases
Environment stuff goes in /etc/profile

For some unknown reason bash refuses to inherit
PS1 in some circumstances that I can't figure out.
Putting PS1 here ensures that it gets loaded every time.

PS1="[\u@\h \W]\\$ "

#
today() to print formatted date
#
To run this function type today at the $ prompt
Added by Vivek to show function in Linux
today()
{
echo This is a `date +"%A %d in %B of %Y (%r)"`
return
}

To run function first completely logout by typing exit at the $ prompt (Or press CTRL + D, Note you may have to type exit (CTRL +D) twice if you login to root account by using su command) ,then login and type $ today , this way today() is available to all user in your system, If you want to add particular function to particular user then open .bashrc file in users home directory as follows:

	# vi .bashrc
OR
mcedit .bashrc
At the end of file add following in .bashrc file
SayBuy()
{
echo "Buy $LOGNAME ! Life never be the same, until you login again!"
echo "Press a key to logout. . ."
read
return
}

Save the file and exit it, after all this modification your file may look like as follows (type command cat .bashrc)

	# cat .bashrc
.bashrc
#
User specific aliases and functions
Source global definitions

if [-f /etc/bashrc]; then
. /etc/bashrc
fi

SayBuy()
{
echo "Buy $LOGNAME ! Life never be the same, until you login again!"
echo "Press a key to logout. . ."
read
return
}

To run function first logout by typing exit at the $ prompt (Or press CTRL + D) ,then logon and type $ SayBuy , this way SayBuy() is available to only in your login and not to all user in system, Use .bashrc file in your home directory to add User specific aliases and functions only.

Tip: If you want to show some message or want to perform some action when you logout, Open file .bash_logout in your home directory and add your stuff here For e.g. When ever I logout, I want to show message Buy! Then open your .bash_logout file using text editor such as vi and add statement:
echo "Buy $LOGNAME, Press a key. . ."
read
Save and exit from the file. Then to test this logout from your system by pressing CTRL + D (or type exit) immediately you will see message "Buy xxxxx, Press a key. . .", after pressing key you will be logout and login prompt will be shown to you. :-)

Why to write function?

· Saves lot of time.

· Avoids rewriting of same code again and again

· Program is easier to write.

· Program maintains is very easy.

SCRIPT NA OBRATENIE TEXT.SUBORU

include <stdio.h>
include <stdlib.h>

int main (int argc, char *argv[]) {
/*** deklaracie premennych ***/
int i, j, N;
char c, **s;

/*** testovanie spravneho poctu argumentov ***/
if (argc != 2) {
printf ("syntax: %s <strana_stvorca>\n", argv[0]);
exit (1);
}
N = atoi (argv[1]); /* konverzia argumentu na cislo */

/*** alokovanie pamate na stvorec ***/
s = malloc (N * sizeof (char*));
if (s == NULL) {
printf ("alokovanie pamate na stvorec zlyhalo (malo pamate?)\n");
exit (2);
}
for (i = 0; i < N; i++) {
s[i] = malloc (N * sizeof (char));
if (s[i] == NULL) {
printf ("alokovanie pamate na riadok stvorca zlyhalo (malo pamate?)\n");
exit (3);
}
}

/*** nacitavanie stvorca zo standardneho vstupu ***/
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++)
s[i][j] = getchar();
c = getchar(); /* nacitanie znaku novy riadok */
}

/*** vypisovanie stvorca otoceneho o 90 st. doprava na standardny vystup ***/
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++)
putchar (s[N-1 - j][i]);
putchar ('\n'); /* vypisanie znaku novy riadok */
}

/*** uvolnenie alokovanej pamate na stvorec ***/
free (s);

return 0;
}

